
Foundations of FinTech
Blockchain

Eshwar Venugopal

Simple Blockchain

2

Simple Blockchain
• Recollect that a blockchain is:

1. A database (ledger of activities)
2. Distributed across multiple servers (transparent)
3. Immutable & Consensus based (tamper-proof to a certain extend)

• In the toy versions, we are going to implement (1) & (3)
• We will be implementing a simpler (and different) proof-of-work algorithm
• We will NOT implement Merkle Tree data structures or worry about verifications
• We will NOT implement a multi-node network system

3

Simple Blockchain: Version 1
• Let us divide the coding into the following core functions:

1. Define how a block would look like
2. Define the hashing function
3. Define a process to add blocks
4. A process to listen for transactions

• Refer to “demoChain_v1.py” file

4

Simple Blockchain: Version 1
1. Define how a block would look like

• Recollect that a block contains:
• Previous block hash
• Data
• Timestamp

5

class Block:
def __init__(self, index, timestamp, data, previous_hash):
self.index = index
self.timestamp = timestamp
self.data = data
self.previous_hash = previous_hash
self.hash = self.hash_block()

Simple Blockchain: Version 1
2. Define the hashing function

• We will use the SHA256 hash function
• Take the header data and hash it twice

6

def hash_block(self):
header=(str(self.index) + str(self.timestamp) + str(self.data) + str(self.previous_hash)).encode()
inner_hash=hasher.sha256(header).hexdigest().encode()
outer_hash=hasher.sha256(inner_hash).hexdigest()
return outer_hash

Simple Blockchain: Version 1
3. Define a process to add blocks

a) At the beginning we need to add a genesis block

7

def create_genesis_block():
Manually construct a block with
index zero and arbitrary previous hash
return Block(0, date.datetime.now(), "Genesis Block", "0")

Simple Blockchain: Version 1
3. Define a process to add blocks

b) Adding new blocks:
• We need the current data for the new block
• We need the hash value of the previous block
• We return the block

8

def next_block(last_block):
this_index = last_block.index + 1
this_timestamp = date.datetime.now()
this_data = input("Hey! Input your data for block #{}: ".format(this_index)) + str(this_index)
this_hash = last_block.hash
return Block(this_index, this_timestamp, this_data, this_hash)

Simple Blockchain: Version 1
4. A process to listen for transactions

• We are going to create the genesis block and listen for transactions using a simple loop

9

Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[0]

How many blocks should we add to the chain after the genesis block
num_of_blocks_to_add = 5

Add blocks to the chain
for i in range(0, num_of_blocks_to_add):

block_to_add = next_block(previous_block)
blockchain.append(block_to_add)
previous_block = block_to_add
Tell everyone about it!
print ("Block #{} has been added to the blockchain!".format(block_to_add.index))
print ("Hash: {}\n".format(block_to_add.hash))

Simple Blockchain: Version 2
• In this version:

• Add a server to listen for transactions
• Add a node
• Add consensus algorithm
• Add mining functionality

• This version does NOT support:
• Multiple nodes across different computers
• Transactions & verifications across parties

• Refer to “demoChainServer_v1.py” file

10

Simple Blockchain: Version 2
Command to add a transaction:
curl "http://localhost:5000/txion" -d "{\"from\": \“Alice\", \"to\":\“Bob\", \"amount\": 300}" -H "Content-
Type: application/json"

Command to mine a block:
curl localhost:5000/mine

11

	Foundations of FinTech�Blockchain
	Simple Blockchain
	Simple Blockchain
	Simple Blockchain: Version 1
	Simple Blockchain: Version 1
	Simple Blockchain: Version 1
	Simple Blockchain: Version 1
	Simple Blockchain: Version 1
	Simple Blockchain: Version 1
	Simple Blockchain: Version 2
	Simple Blockchain: Version 2

